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Introduction	  
Individual	   railroad	   track	   maintenance	   standards	   and	   the	   Federal	   Railroad	   Administration	   (FRA)	   Track	  
Safety	   Standards	   require	   periodic	   inspection	   of	   railway	   infrastructure	   to	   ensure	   safe	   and	   efficient	  
operation.	   	   This	   inspection	   is	   a	   critical,	   but	   labor-‐intensive	   task	   that	   results	   in	   large	   annual	   operating	  

expenditures	   and	   has	   limitations	   in	   speed,	   quality,	   objectivity,	   and	   scope.	   	   To	   improve	   the	   cost-‐
effectiveness	  of	  the	  current	  inspection	  process,	  machine	  vision	  technology	  can	  be	  developed	  and	  used	  
as	  a	  robust	  supplement	  to	  manual	  inspections.	  	  One	  of	  the	  objectives	  of	  the	  research	  underway	  at	  the	  

University	  of	  Illinois	  at	  Urbana-‐Champaign	  (UIUC)	  is	  to	  investigate	  the	  feasibility	  of	  using	  machine-‐vision	  
technology	   to	   recognize	   turnout	   components,	   as	   well	   as	   the	   performance	   of	   algorithms	   designed	   to	  
recognize	  and	  detect	  defects	  in	  other	  track	  components.	  	  In	  addition,	  to	  prioritize	  which	  components	  are	  

the	  most	  critical	  for	  the	  safe	  operation	  of	  trains,	  a	  risk-‐based	  analysis	  of	  the	  FRA	  Accident	  Database	  was	  
performed.	   	  This	  and	  other	  research	  on	  railway	  applications	  of	  machine-‐vision	  technology	  at	  UIUC	  are	  
interdisciplinary	   collaborations	   between	   the	   Railroad	   Engineering	   Program	   in	   the	   Department	   of	   Civil	  

and	   Environmental	   Engineering	   and	   the	   Computer	   Vision	   and	   Robotics	   Laboratory	   at	   the	   Beckman	  
Institute	  for	  Advanced	  Science	  and	  Technology.	  

Findings	  
The	  goal	  of	   this	  machine-‐vision	   system	   for	   track	   inspection	   is	   to	   supplement	   current	   visual	   inspection	  

methods,	  allowing	  consistent,	  objective	   inspection	  of	  a	   large	  number	  of	   track	   components.	   	  Based	  on	  
analysis	   of	   railroad	   derailment	   statistics	   and	   input	   from	   subject-‐matter	   experts,	   we	   are	   focusing	   our	  
initial	   research	   and	   development	   efforts	   on	   inspection	   of	   cut	   spikes,	   rail	   anchors,	   and	   turnout	  

components.	  

A	   Virtual	   Track	  Model	   was	   designed	   to	   generate	   synthetic	   images	   for	   the	   initial	   development	   of	   the	  
machine-‐vision	   inspection	   algorithms.	   	   This	   simulation	   also	   provided	   a	   test-‐bed	   for	   selecting	   specific	  
camera	   views,	   which	  would	   capture	   the	   components	   of	   interest,	   using	   virtual	   cameras	   placed	   in	   the	  

simulation	  at	  locations	  consistent	  with	  track	  regulations	  and	  vehicle	  mounting	  conditions.	  

An	   image	   acquisition	   system	   was	   designed	   to	   capture	   video	   recordings	   of	   track	   components	   from	   a	  
moving	   vehicle.	   	   This	   system	  uses	   a	   CCD	   video	   camera	   and	   ruggedized	   computer	   to	   obtain	   and	   store	  
video	  on	  the	  track.	  	  The	  system	  will	  be	  augmented	  by	  adding	  lighting	  for	  adverse	  daylight	  conditions.	  
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Algorithms	  use	  edge	  detection	  and	  texture	  information	  to	  provide	  a	  robust	  means	  of	  detecting	  rail,	  ties	  
and	   tie	   plates,	   which	   narrows	   the	   search	   area.	   	   Within	   this	   restricted	   area,	   knowledge	   of	   probable	  

component	   locations	  allows	  the	  algorithms	  to	  determine	  the	  presence	  of	  spikes	  and	  rail	  anchors	  even	  
when	  there	  are	  variations	  in	  the	  appearance	  of	  the	  components.	  

The	   machine-‐vision	   algorithms	   require	   previously	   stored	   models	   of	   the	   textures	   and	   components.	  	  
Therefore,	   dynamic	   updates	   are	   needed	   for	   the	   situations	   where	   the	   part	   of	   the	   track	   that	   is	   being	  

investigated	  changes	  and	  also	  other	  situations	  where	  the	  components	  are	  changing	  appearance	  based	  
on	  environmental	  or	  manufacturing	  differences.	   	  Central	  to	  this	  update	  method	  is	  the	  ability	  to	  detect	  
and	   localize	   the	   periodically	   repeating	   parts.	   	   Using	   periodicity	   detection,	   and	   then	   implement	   the	  

additional	  component	  localization	  step	  that	  was	  proposed	  where	  autocorrelation	  is	  applied	  to	  the	  Gabor	  
frequency	  domain.	   	  The	  models	  will	  be	  updated	  using	   the	   results	  of	   this,	  which	  are	   inherently	   robust,	  
since	  the	  detected	  periodicity	  relies	  on	  some	  consistent	  component	  being	  repeated.	  

Recommendations	  
Future	   work	   involves	   refinement	   of	   the	   algorithms	   to	   improve	   the	   reliability	   of	   spike	   and	   anchor	  

detection.	  	  Anomalous	  objects	  from	  unforeseen	  circumstances,	  such	  as	  leaves,	  could	  interfere	  with	  this	  
initial	   texture	   classification	   phase.	   	   Consequently,	   experimentation	   with	   several	   machine-‐learning	  
methods	   to	   perform	   component	   detection	   in	   the	   presence	   of	   anomalies	   is	   recommended.	   	   Work	   is	  

continuing	  on	  processing	  the	  over-‐the	  rail	  view	  and	  merging	  results	  from	  this	  view	  with	  the	  lateral	  view	  
to	   increase	   the	   accuracy	   of	   the	   identified	   defects	   and	   the	   estimated	   measurements.	   	   Once	   the	  

algorithms	  and	  lighting	  for	  inspection	  of	  spikes	  and	  anchors	  have	  been	  refined	  using	  the	  video	  track	  cart,	  
further	  experimentation	  will	  be	  needed	  on	  adapting	  the	  system	  for	  testing	  on	  a	  high-‐rail	  vehicle.	  
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CHAPTER 1.  INTRODUCTION 

1.1 Background and motivation 

North American Railways and the United States Department of Transportation 

(US DOT) Federal Railroad Administration (FRA) require periodic inspection of railway 

infrastructure to ensure the safety of railway operation.  This inspection is a critical, but 

labor-intensive task resulting in large annual operating expenditures and it has limitations 

in speed, quality, objectivity, and scope.  A machine vision approach is being developed 

to automate inspection of specific components in the track structure.  The machine vision 

system consists of a video acquisition system for recording digital images of track and 

custom designed algorithms to identify defects and symptomatic conditions from these 

images, providing a robust solution to facilitate more efficient and effective track 

inspection.  The main focus of the system is the detection of irregularities and defects in 

wood-tie fasteners, rail anchors, and turnout components.  An experimental on-track 

image acquisition system has been developed and used to acquire video in the field of 

different track classes.  The machine-vision algorithms use a global-to-local component 

recognition approach, in which edge and texture-based detection techniques are used to 

narrow the search area where components are likely to be detected.  The system will be 

designed to evaluate the railway infrastructure in accordance with FRA track safety 

regulations, but will be adaptable to railroad-specific track standards.  In the future, 

defect analysis and comparison with historical data will enhance the ability for longer-

term predictive assessment of the health of the track system and its components, more 

informed and proactive maintenance strategies, and improved understanding of track 

structure degradation and failure modes. 
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1.2 Study objectives 

Railroads conduct regular inspections of their track in order to maintain safe and 

efficient operation.  In addition to internal railroad inspection procedures, periodic track 

inspections are required under Federal Railroad Administration (FRA) regulations.  

Although essential, track inspection requires both financial and human resources and 

consumes valuable track capacity.  The objective of the research is to investigate the 

feasibility of developing a machine vision system to make track inspection more 

efficient, effective, and objective.  In addition, interim approaches to automated track 

inspection are possible, which will potentially lead to greater inspection effectiveness and 

efficiency prior to full machine-vision system development and implementation.  These 

interim solutions include video capture using vehicle-mounted cameras, image 

enhancement using image processing software, and assisted automation using machine-

vision algorithms. 

The primary focus of this research is inspection of North American Class I 

railroad mainline and siding tracks, as these generally experience the highest traffic 

densities.  Heavy axle loads and high traffic volumes necessitate frequent inspection and 

more stringent maintenance requirements, but present railroads with less time to 

accomplish it.  Additionally, the cost associated with removing track from service due to 

inspections or the repair of defects is most pronounced on these lines.  This makes them 

the most likely locations for cost-effective investment in new, more efficient, but 

potentially more capital-intensive inspection technology.  Although the primary focus of 

this research is the inspection of high-density track, algorithms are also being tested on 

lower track classes to ensure robustness to component variability and condition.  The 

algorithms currently under development will also be adaptable to many types of track 

(and track components), including transit and some components in high-speed rail (HSR) 

infrastructure. 

A machine vision system is being developed to automate, or enhance, the visual 

inspection of track and track components.  Machine vision algorithms are being designed 

to recognize track components, identify their proper location and condition, and detect 



 

 

3 

and quantify the extent of the defects found.  Equipment to aid in the development of the 

this system consists of a virtual computer model of the track, image acquisition hardware, 

and a platform for obtaining video of actual components of in-service track from local 

railroads. 

The machine vision system designed for this project was developed through an 

interdisciplinary collaboration between the Computer Vision and Robotics Laboratory 

(CVRL) at the Beckman Institute for Advanced Science and Technology and the Railroad 

Engineering Program in the Department of Civil and Environmental Engineering, at the 

University of Illinois at Urbana-Champaign. 
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CHAPTER 2.  DETERMINATION OF THE INSPECTION TASK  

2.1 Review of Related Inspection Technologies 

Prior to commencing work on this project, we conducted a survey of existing 

technologies for non-destructive testing of railroad track and track components (1, 2, 3, 

4).  This survey provided insight as to which tasks were best suited for vision-based 

inspection and were not already under development or in use within the railroad industry.  

This survey encompassed well-established inspection technologies (e.g. ultrasonic rail 

flaw and geometry car testing) and more experimental technologies currently under 

development (e.g. inertial accelerometers). 

Out of the technologies we surveyed, machine vision is the most applicable 

technology to our present scope of work given the manual, visual nature of current track 

inspections.  Machine-vision systems are currently in use or under development for a 

variety of railroad inspection tasks, both wayside and mobile, including inspection of 

joint bars, surface cracks in the rail, rail profile, track gauge, intermodal loading 

efficiency, railcar structural components, and railcar safety appliances (1-10).  The 

University of Illinois at Urbana-Champaign (UIUC) has been involved in multiple 

railroad machine-vision research projects sponsored by the Association of American 

Railroads (AAR), BNSF Railway, NEXTRANS Center, and the Transportation Research 

Board (TRB) High-Speed Rail IDEA Program (6, 7, 8, 9, 10). 
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2.2 Railway Machine-Vision Inspection Systems 

Railway applications of machine-vision technology that were previously 

developed or are under development at UIUC have three main elements (Figure 1).  The 

first element is the image acquisition system, in which digital cameras are used to obtain 

images or video in the visible or infrared spectrum.  The next component is the image 

analysis system, where the images or videos are processed using machine-vision 

algorithms that identify specific items of interest and assess the condition of the detected 

items.  The final component is the data analysis system, which compares and verifies 

whether or not the condition of track features or mechanical components comply with 

parameters specified by the individual railroad or the FRA.  This component will also 

record and compare data needed for trend analysis. 

 

 

Figure 1. Primary Components of a Machine Vision System 

 

The advantages of machine vision include greater objectivity and consistency as 

compared to manual (i.e. visual) inspection, and the ability to record and organize large 

quantities of visual data in a quantitative format.  Gathering and organizing quantitative 

data facilitates analysis of the health of track or vehicle components over both time and 

space.  These features, combined with data archiving and recall capabilities, provide 

powerful trending capabilities in addition to the enhanced inspection capability itself.  

Some disadvantages of machine vision include difficulties in coping with unusual or 

unforeseen circumstances (e.g. unique track components) and the need to control or 

augment variable outdoor lighting conditions typical of the railroad environment. 
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2.3 Determination Of Inspection Tasks 

2.3.1 Prioritization Based on FRA Accident Statistics 

Safe and efficient network operation is of utmost importance to the rail industry.  

In order to determine which components are most critical to the safe operation of trains, 

an analysis of the FRA Accident Database was conducted (1, 2, 3, 4, 5, 11, 12).  The 

initial approach, which was based on the frequency of derailments, revealed that the 

priorities for inspection with machine vision were buckled track, switch points, and other 

turnout defects (1, 2, 3).  Although this approach is valid, other variables (e.g. the number 

of cars derailed) can provide additional information on the risk associated with a 

derailment caused by a specific track component (13).  Therefore, we selected “number 

of cars derailed” as a proxy for the consequence of a derailment, and used these data in a 

risk-based prioritization approach. 

The initial data analysis approach for this project used track derailment data from 

1998 to 2009 and classified the data into five FRA-established categories (Figure 2).  

Some components, such as those associated with roadbed and geometry, are currently 

being inspected by other technologies including track geometry cars and ground 

penetrating radar (GPR).  For this reason, defects associated with categories one (rail, 

joint bar and rail anchoring) and three (frog, switches and track appliances) were selected 

for further prioritization and inspection using machine vision.  Most of these components 

are currently inspected using manual, visual inspection and may be amenable to machine 

vision inspection, thus they were selected for further consideration (1, 2, 3). 
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Figure 2. Top Track Related Derailment Causes by Track Category from 1998-2009 
 

2.3.2 Track Component Inspection Prioritization  

In the initial selection of inspection tasks and components for this project, we took 

into account the lack of available technology, number of derailments, severity of defects, 

and their potential contribution to accident prevention.  We then sought and reviewed 

input from AAR researchers, Class I railroad track-engineering and maintenance 

managers, track inspectors, and other experts in track-related research.  The result of this 

initial process was the selection of the following track inspection tasks: 

1. Raised, missing, or inappropriate patterns of cut spikes 

2. Displaced, missing, or inappropriate patterns of rail anchors 

3. Turnout component inspection 

Beyond the current scope of work listed above, track components and inspection 

tasks that have been identified for future machine-vision research include measuring tie 

spacing, identifying insulated joint slippage, monitoring wayside rail lubricator 
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performance, recording rail manufacturing markings, determining thermite weld 

integrity, and monitoring track circuit bond wire condition. 

2.3.3 Risk-Based Turnout Component Inspection Prioritization 

Using data from the FRA Accident Database, a detailed evaluation of derailment 

data for track classes 4 and 5 was performed to quantify the risk of derailments at 

turnouts.  Risk can be defined as the probability of an accident occurring multiplied by its 

consequence (5, 13).  With this being said, we selected the number of cars derailed as a 

proxy for consequence. 

For the period of 1998 through 2009, the number of derailments (derailment 

frequency) was plotted against the number of cars derailed (consequence) for each 

derailment cause.  Figure 3 was divided into four quadrants based on the average value of 

each axis.  The vertical dotted line represents the average derailment frequency and the 

horizontal dotted line represents the average number of cars derailed for all turnout-

related derailment causes. 

 
Figure 3. Railroad Track-Caused Derailments by Cause Severity on  

Track Classes 4 and 5, from 1998 – 2009. 
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Each quadrant in Figure 3 has a different meaning, and provides valuable insight 

into the prioritization of turnout components for machine vision inspection.  For example, 

the lower left quadrant represents infrequent accident causes that result in low 

consequence derailments.  The causes contained in the upper left quadrant are also rare, 

but their consequences are higher than average.  The values in the lower right quadrant 

are more common but they are associated with low-consequence derailments.  Of greatest 

importance are the accident causes in the upper right quadrant, as they occur at above-

average frequencies and result in high-consequence derailments. 

The causes contained in the upper quadrants were included in our priorities for 

inspection primarily due to the risk and severity of these types of defects.  Additionally, 

they account for almost 80% of turnout derailments on track classes 4 and 5.  It is 

interesting to note that no causes were classified in the lower right (high frequency / low 

severity) quadrant.  The end result of the analysis was the selection of the following rank-

ordered turnout components/defects for inspection using machine vision: 

1. Switch point  - worn or broken  

2. Other frog, switch, and track appliance defects  

3. Turnout frog - worn or broken  

4. Switch connecting or operating rod - broken or defective  

5. Switch point  - gap between switch point and stock rail 

In addition to the five tasks selected for inspection, missing bolts and cotter pins 

were included into our initial turnout inspection priority, since the inspection of these 

components in turnouts is conducted primarily using visual means and they are suitable 

candidates for inspection using machine vision. 

2.4 Inspection Guidelines 

A thorough understanding of the specific track components and defects associated 

with them was gained prior to developing the machine-vision algorithms.  We used the 
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FRA Track Safety Standards, Class I track engineering standards, and the Track Safety 

and Condition Index (TSCI) to determine guidelines and procedures used for track 

inspection (14, 15, 16, 17).  Example guidelines for the algorithms include the height of a 

spike above the base of rail that would constitute a raised spike and how many spikes 

need to be raised before they would be considered critical.  Similar considerations were 

developed for inspection of anchors and turnout components, taking into consideration 

the expertise of track inspectors, researchers, and track maintenance managers at Class I 

railroads. 
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CHAPTER 3.  DATA COLLECTION 

3.1 Image and Video Acquisition 

Collecting images and video of components to be inspected is a critical part in the 

development of the machine vision system.  There are important trade-offs between 

where the components to be inspected are located in the view, how many components can 

be seen in a single view, and also what views are required to perform the desired 

inspections.  Views of the components must not only show the entire component in its 

functional situation, but also be conducive to obtaining measurements during the 

inspection of these components.  In addition, the cameras must be placed to provide 

views that permit the machine vision algorithms to consistently and reliably detect the 

track components of interest. 

Once viewing angles are determined, another challenge is to collect images of 

components that are deformed or defective.  However, due to the scarcity of defects, the 

number of violations that can be found locally are far fewer than the examples needed to 

properly develop a machine vision system.  Therefore, methods for finding or creating 

these conditions must be addressed. 

A final consideration is the need to obtain continuous video of the track sections 

of interest using equipment such as high-rail vehicles and geometry cars, which are two 

possible implementation vehicles for the final system.  Long video sequences are also 

needed to develop the machine vision algorithms to extract images and test the 

component identification success rates under realistic environmental conditions, thus an 

experimental mobile camera system was envisioned. 
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3.1.1 Virtual Track Model for Initial Algorithm Development 

An important consideration in the development of the image acquisition system is 

the placement of cameras to acquire suitable images of desired components in their 

functional settings.  Securing time to test the image acquisition system on active track 

during the developmental phases proved difficult, so a virtual track model (VTM) was 

created.  The VTM used American Railway Engineering and Maintenance-of-Way 

Association (AREMA) recommended practices for the design of track components to 

model FRA Class 4 and 5 track and included sections of both tangent and curved track 

(18).  AAR clearance plates were incorporated into the VTM to ensure camera 

placements were in feasible locations (19). 

The angles of the virtual cameras were then adjusted until they enabled viewing 

of the relevant track components and allowed assessment of the conditions of interest that 

were conducive to algorithm development.  The VTM camera view experimentation 

resulted in the selection of two initial camera views: the lateral view (Figure 4A) and the 

over-the-rail view (Figure 4B) (1, 2).  The lateral view provides a good view of tie plates, 

spikes and anchors.  The over-the-rail view provides perpendicular views of the spike and 

anchors to combine with the lateral view for increasing the accuracy of the 

measurements.  In addition, it also provides a view of the ties for future inspection tasks. 

  

A: Lateral view showing view of simulated 
track and tie plate 

B: Over-the-rail view showing both sides of 
the simulated tie plate and crib ballast 

Figure 4. Virtual Camera Views 
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The virtual cameras were then used to generate synthetic images of the 

components in the simulation from the selected camera locations.  These images were 

used for initial development of the machine-vision algorithms.  They provided insight 

into challenges such as lighting and variation in component design, which allowed us to 

test the initial algorithm's ability to identify specific track components. 

Using the VTM the brightness and direction of the simulated sunlight was 

adjusted to test the algorithm’s effectiveness in the presence of over saturation and 

shadows.  The over saturation condition caused problems in the algorithms that 

discriminate the ballast from the ties, since the brightness caused the ballast to lose its 

characteristic texture, thus making it difficult to discriminate the ballast and tie textures.  

When localizing the base of the rail in the lateral view, the shadows were problematic for 

initial algorithms that relied only on edge detection, since the shadows created edges at 

the shadow boundaries.  However, algorithms incorporating texture identification into 

edge detection were developed and were more effective. 

Defects were simulated with the VTM to understand how different camera views 

influenced the algorithm’s ability to locate and detect these defects of differing types.  On 

a stretch of simulated track, a series of spikes were raised to varying heights and anchors 

were moved out of position to simulate actual defect scenarios.  These images were used 

to test the localization of out of place components and the measurement capabilities of 

the inspection algorithms.  However, the amount of time devoted to the simulation 

development is significant, in order to provide the realism needed for robust detection in 

the field under environmental circumstances, so a system was developed for field video 

acquisition. 

3.2 Track Cart for Field Video Acquisition 

Beyond the virtual images, a method to capture video that would be representative 

of future cameras attached to a track inspection vehicle, was needed for further 

development of the machine-vision inspection algorithms.  For this reason, and the need 

to minimize the use of high-rail vehicles and mainline track capacity, an experimental 

data acquisition system referred to as the Video Track Cart (VTC) was designed for 
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collecting continuous video of track sections of interest on low-density track (Error! 

Reference source not found.).  This additional track time allows for field adjustments of 

a variety of parameters, such as focus, shutter speed, and camera views.  

 

 

Figure 5. a) The VTC Data Collection and Experimentation with Lighting at the 
Monticello Railroad Museum with NEXTRANS Interns Matt Toussaint ('09) left, and 
Mark Asmuth ('10) right, with John M. Hart, NEXTRANS Mentor ('09) and Advisor 

('10), and b)  Mark Asmuth, Matt Toussaint, and Luis Fernando Molina, NEXTRANS 
Mentor ('10), collecting data on Norfolk Southern track. 

 

Two camera views are being used to record images of components on each side of 

the rail: an over-the-rail view and a lateral view.  The over-the-rail view is captured 

parallel to the longitudinal axis of the track (Figure 6A).  This view is used for measuring 

the distance between the spike head and the base-of-rail and verifying spiking patterns, 

also to measure the distance between switch points and stock rail, and identify worn or 

broken frog points.  The lateral view is taken perpendicular to the rail (Figure 6B).  The 

base of the rail and fastening system are visible from this view and is used for measuring 

the distance between the rail anchors and the edge of the ties and verifying anchor 

patterns.  In addition, is also used to identify missing bolts/cutter pins and worn or broken 

switch points in turnouts. 
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A: Over-the-rail View  B: Lateral View 

Figure 6. Initial Camera Views 

 

3.3 Autonomous Imaging Hardware 

There are three main components that were considered in developing a video 

acquisition system: the camera, lens, and computing hardware.  In selecting a camera, the 

critical specifications are frame rate, shutter speed, and image resolution.  The values 

necessary for frame rate and shutter speed are dependent on the speed at which the VTC 

is moving.  For initial algorithm development at low speeds, a camera capable of 30 

frames-per-second and a shutter speed of at least 1/500 seconds was sufficient.  The 

required resolution is determined by the smallest component feature to be identified or 

the accuracy required in defect measurements.  The close positioning of the cameras to 

the components, the large size of the components to be inspected, along with the 1/8 to 

1/4-inch accuracies required, indicate a standard VGA resolution camera would be 

adequate. 

Several factors are considered for the camera lens selection, such as distance of 

the camera from the subject, depth of field requirements, and the lens distortion.  The 

depth of field suitable for use in the over-the-rail view is the most important 

consideration because the track appears in both the foreground and background in this 

view.  The camera placement is restricted to the allowable areas found in the VTM, 

which are placed at a distance practical for track vehicle mounting and within the AAR-

required clearance plates.  This suggests a wide-angle lens that will provide a full view of 
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the components of interest and their surrounding area, but can also be placed relatively 

close to the components themselves.  However, the use of very wide-angle lenses can 

induce a significant level of distortion around the edges of the image, thus a trade-off is 

required. 

Many factors were considered in the selection of the laptop computer used for 

recording data in the field to ensure adequate performance while moving along track in 

the outdoor environment.  The most important factor was the ability to record video 

without dropping (or missing) video frames.  For hard drive access, a high-performance, 

single-level-cell, solid-state hard drive is the optimal choice as it provides speed, 

reliability, low power consumption, and low access times.  Standard hard drives also 

suffer from reduced performance when fragmented.  A high-contrast screen was also 

necessary for viewing in bright outdoor environments.  A degree of ruggedness is 

required to reliably use the equipment in track situations that induce vibration and shock 

and under a variety of environmental conditions, such as dust and rain.   

The selected equipment for video data collection was a Dragonfly®2 DR2-COL 

camera.  This camera has an image resolution of 640x480 pixels (VGA) and can record 

video at up to 60 frames per second (fps) with shutter speeds as fast as 1/100,000 seconds 

(20).  The camera is equipped with a 6 mm wide-angle lens.  The laptop selected has 

Microsoft Windows XP Professional, 4 GB of RAM, an Intel® Core ™ 2 Duo P9600 

2.66 GHz processor, and an Ultra Performance Solid State Drive (Figure 7). 
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Figure 7. Autonomous Imaging Hardware 

  

The initial field data collection required a mobile power source to provide power 

to the cameras and the laptop.  A Mega-Tron SRM-27 marine deep cycle battery was 

selected that has the capability of steadily powering electronics drawing up to 10 amps of 

power for 4-5 hours.  The power is supplied to the equipment through a DC to AC 

converter, which transforms the 12volts (battery) to 110VAC (regular North American 

outlets). 

The VTC has been used on low-density track, where track occupancy time is 

easier to obtain.  Many video recording sessions have taken place at a local railroad 

museum where the system was modified based on the results of field experimentation.  A 

significant amount of videos were also collected on Class I railroad track.  Long stretches 

of tangent track with varying conditions, including variations in natural lighting, 

vegetation, and differing ballast types were encountered and are valuable for determining 

statistics on consistent component recognition under these realistic field conditions.  

Substantial video of turnouts, with the VTC approaching the turnouts from each possible 

direction was obtained and is being used to experiment with identifying the transition 

between the tangent and turnout sections of track to invoke the appropriate inspection 

algorithm. 
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3.4 Approach to Lighting Challenges 

In the lateral view, improvement in the contrast is needed to distinguish spikes 

more clearly from the background of the rail, which is the same color and texture.  When 

spikes are raised they tend to blend in and are more difficult to identify and measure.  

This can be enhanced by increasing the exposure of the image during acquisition, 

however when the ballast is light in color (white or grayish) it tends to become 

overexposed, causing difficulty with the texture detection phase.  Currently, we are 

experimenting by adding lights to the VTC to further illuminate only the upper area of 

the image where the rail and spikes are located, but not the lower area where the ballast is 

closest to the camera.   

To achieve this we are investigating LED type lighting that will not require a 

significant amount of wattage, and will be able to be powered by our VTC on-board 

battery system (Figure 8).  This should improve the consistency and reliably in detecting 

the components of interest against a similar type background (Figure 9). 

 

  

A: Light off B: Light on 

Figure 8. Effects of The Lighting on The Web Of The Rail  
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Figure 9. Video frame taken with LED light and processed by the machine vision 
algorithms showing successful detection of a spike head and its distance from the rail. 

 

3.5 Current Additions to the VTC 

The VTC currently requires an operator to propel it along the track to ensure a 

consistent speed.  To keep the cart moving at a more consistent rate, a motor and position 

encoder is being added to the Video Track Cart, the speed will be maintained by a 

position-integral-differential (PID) controller.   In addition, a Global Positioning System 

(GPS) device is also being interfaced to the laptop to mark the areas inspected and, 

combined with the encoder, the location of the defects found. 
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CHAPTER 4.  ALGORITHM DEVELOPMENT AND DATA ANLYSIS SYSTEM 

4.1 Track Inspection Algorithms 

Early algorithm development focused on spike and anchor detection and defect 

recognition.  These algorithms can be summarized as a coarse-to-fine approach for 

detecting objects.  We first locate the track components with little variability in 

appearance and predictable locations (e.g. the rail), and then locate objects that are 

subject to high appearance variability (e.g. spike heads and anchors) in subsequent stages.  

This increases the robustness of component detection by restricting the search space for 

the smaller components, whose appearances can vary. 

To further increase robustness to changing environmental conditions and changes 

in object appearance (e.g. differing material types or corrosion), we have selected 

features that do not rely on a specific spatial description, but rather a configuration of 

simple, local features that are known to be valuable in classification.  The simple, local 

features that we use include edges and Gabor features.  Edges are frequently used to 

detect objects in machine vision since object boundaries often generate sharp changes in 

brightness (21).  Image gradients (edges) should be consistent among differing ties and 

rails, but unanticipated track obstacles could create unanticipated edges, causing 

difficulty for the algorithms.  For this reason, texture information from the ballast, tie, 

and steel was incorporated into the edge-based algorithm to improve its robustness.  This 

approach relied on texture classification using Gabor filters, which produced low-level 

texture features.  Gabor filtering is used to summarize two-dimensional spatial 

frequencies, and this can be used in texture discrimination (21). 
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4.2 Image Decomposition 

Since we operate using a coarse-to-fine approach, we decompose the image 

beginning with the rail, which is the largest, most consistently detectable object.  Then, 

we differentiate ballast texture from non-ballast texture using Gabor filtering.  Labeled 

examples of ballast, tie, and steel textures were created using previously stored images 

(Figure 10).  When presented with a previously unseen image, texture patches are 

extracted and classified as either “ballast” or “non-ballast”.  This classification incurs 

some errors due to foreign objects and other image noise, and the patches do not 

necessarily occur on object boundaries.  Though the boundaries are inexact and the 

classification imperfect, in all test images, the tie, rail, and ballast areas were reliably 

isolated for subsequent processing. 

 
Figure 10. Template Images of Specific Ballast, Rail, and Tie Textures Used for Image 

Processing 

 

After isolating the foreground portion of the tie, an accurate boundary for both the 

tie plate and tie must be obtained to determine if an anchor has moved from its proper 

position.  Also, when the tie plate is delineated, prior knowledge of the dimensions of the 

tie plate can be compared to the image to calibrate its scale for defect measurement 

estimations. 

The major delineations are performed in the following sequence (Figure 11): (a) 

horizontal rail-to-tie plate, (b) horizontal tie-to-tie plate, (c) vertical tie-to-tie plate on left 

and right side, and (d) vertical tie-to-ballast on left and right side.  Texture information is 

used to ensure that (a) the rail-to-tie plate edge separates two steel textures, and that (b) 

the tie-to-tie plate edge separates steel and tie textures.  After delineation of the two 

horizontal edges (a) and (b), the vertical edges (c) and (d) are found since they are 

reliably detected only if their search space is restricted.  A restricted search space is 
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needed because shadows, occlusions, and other unforeseen anomalies will cause 

unanticipated edges and shapes.  The vertical (c) tie-to-tie plate edges are the dominant 

gradients above the (b) horizontal tie-to-tie plate edge, and the vertical (d) tie-to-ballast 

edges are the dominant gradients below the (b) horizontal tie-to-tie plate edge.  These 

edges delineate the tie plate area. 

 
 

Figure 11. Major Delineations of Lateral View 

 

4.3 Spike and Anchor Inspection 

The spikes are located with spatial correlation using a previously developed 

template (1, 2).  The search area for the spikes is limited after the tie plate and rail are 

both delineated given that spikes will only be found in certain positions.  Rail anchors, 

when installed correctly, have more distinctive visual characteristics when viewed from 

the gauge-side as compared to the field-side, therefore, our anchor inspection primarily 

uses this view (1, 2).  The anchors are identified and the distances to both the tie and tie 

plate are measured.  The search area for the anchors is restricted to where the rail meets 

the ballast on either side of the tie plate.  Anchors are detected by identifying their 

parallel edges.  Color intensity information is also included to ensure that parallel edges 

have similar intensity distributions (1, 2). 

4.3.1 Video Processing - Over-the-rail View 

The over-the-rail camera view can be used in conjunction with the lateral view to 

assist in the identification of spikes and tie plate holes and can aid in estimating the 

distance a spike is raised above the base of rail.  For processing this view, we apply the 
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same basic approach as is used for the lateral view.  The algorithm first estimates the tie 

locations, then delineates the base of the rail, identifies the location of the ties and tie 

plates, and finds the spike heads and tie plate holes. 

We inspect the individual video frames and process them independently.  The 

items are inspected when they appear near the center of the images, thus minimizing the 

effect of lens distortion.  The inspected items are not in the exact center of the image 

because the lower half of the image provides a more desirable viewpoint as compared to 

the exact center.  However, the borders of the image remain unprocessed to avoid 

introducing distortion to the algorithm.  With this approach, the results are compiled and 

superimposed onto the original video. 

An evaluation will be made between the panoramic and video processing 

approaches to provide documented information on the advantages and disadvantages of 

each approach to help guide users and developers of a machine-vision track inspection 

system. 

4.3.2 Tie Location Estimation 

The estimation of tie location is performed using the texture procedures described 

earlier for discriminating ballast textures from non-ballast textures.  This produces the 

images seen in Figure 12, showing the detection of texture patches of the respective 

types; white patches representing ballast and black patches representing all non-ballast 

areas.  Next, a "tie filter", consisting of a rectangular strip of non-ballast patches, is used 

to isolate the tie in the black and white patched image, thus delineating the tie location.  

The frames containing a tie in the foreground produce the maximum response values to 

the “tie filter”, and this occurs periodically with respect to time as the video frames are 

processed. 
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A: Texture Classified Image in Which White 

Squares Represent Ballast and Black Squares 

Represent Non-ballast Areas 

B: Tie Location Found Using Tie Template 

Figure 12. Texture Detection 
 

4.3.3 Location and Delineation of the Rail - Over-the-rail View 

The rail is identified in the video by finding an area of low intensity difference 

between consecutive frames due to the consistency of the appearance of the rail 

compared to the changing ballast and ties.  This step coarsely estimates the location of the 

rail in the center of the image.  Using this estimation, each frame is further processed by 

finding the image gradients near the boundary of the identified area to refine the location 

of the edge at the base of the rail (Figure 13A). 

 

 

A:  Delineation of the Base of the Rail from the Over-the-rail View Using the Strong Gradient Produced by 

the Edges of the Rail in the Foreground Against the Sections Containing Ballast and Ties in the 

Background 
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B: Delineated Tie and Tie Plate Location 

Estimations 

C: Component Identification Using Gradient 

Templates Inside the Restricted Search Area 

 

Figure 13. Over-the-Rail Image Capture and Analysis 
 

4.3.4 Delineating the Ties 

After the location of the rail edge has been determined, lower level texture 

processing can be used to find the ties and tie plates.  Using the methods described in the 

"Image Decomposition" section, the ballast and tie texture patches can be classified.  

Next, the ballast-to-tie edges are found using this texture information and the tie-to-tie 

plate edges are then found using their strong gradients (Figure 13B).  With the area of the 

tie plate restricted by the previous steps, the spike head, tie plate holes, and potential 

defects can be found by using gradient templates in the search area (Figure 13C). 

In the video processing method, knowledge about defects in the surrounding track 

can be traced by numbering ties as the algorithm isolates them, and storing their 

respective health information.  In addition, tie health details can be superimposed on the 

video frames and the video reassembled so it can easily be viewed, interpreted, and 

confirmed by a human operator.  As these two methods are refined, they will be 

integrated for verifying the defects and increasing the accuracy of measurement 

estimates. 
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4.4 Track Component Defect Detection and Panorama Generation 

Panoramic images aid in visualizing defects and can be used in the future to 

provide a chronological record of track conditions (Figure 14). 

 

 

A: Panorama Generation Using Velocity Estimation for Accurate Panoramas 

 

 

B: Tie, Tie Plate, Anchor and Spike Delineation on Test Panorama 

Figure 14. Panorama Generation for Track Component Detection 

 

Algorithms generate panoramas from video data by selecting vertical strips from 

the center of the frames, thereby minimizing the effect of distortions and perspective 
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differences, which become more severe as the distance between the component and the 

center of the image increases (Figure 14A).  After the video is acquired, the first step 

performed by the algorithm is velocity estimation, which detects the distance the camera 

moved between consecutive frames.  This velocity information is used to determine the 

size of the strip required from each frame to construct accurate panoramas at a variety of 

data collection speeds.  These strips are then appended to each other to create the final 

panoramic image.  Once the panorama is generated, the results of the component 

inspection can be superimposed onto it (Figure 14B).  Alternately, the inspection can take 

place on the panorama itself by detecting the appropriate search areas, and subsequently 

recognizing the components and detecting defects. 

 

4.5 Experimental Results for Spikes, Anchors and Ties 

To measure the system’s performance, we monitor the accuracy of the system as 

it identifies raised spikes.  In order to identify raised spikes, the distance from the base-

of-rail to the spike head is measured.  This requires that both the spike head and the base-

of-rail are correctly localized, but localization is only possible after the components are 

first detected. 

Since our algorithms identify defects in components that are near or over a tie 

(e.g. spikes and anchors) it is important to detect the tie and tie components reliably 

before localizing the exact parts of the components that will be used in distance 

measurements.  For evaluating the detection algorithms, we differentiate between 

precision and recall, since precision penalizes the erroneous detection of an object that is 

not present (i.e. false positives), and recall penalizes the missed detection of an object 

that is in fact present (i.e. false negatives). 

We also measure the accuracy of the localization of certain parts of the 

components.  Our goal is to correctly localize the base-of-rail and the edge of the spike 

head.  Detecting the base-of-rail is trivial since all rails will have a base, but accurately 
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localizing the exact line in the image that corresponds to the base-of-rail is more 

challenging. 

Experimental results show an accuracy of 100% for the base-of-rail localization 

using the lateral view, and 76% for the over-the-rail-view.  In the case of spikes, both 

views resulted in 71% accuracy for spike head localization.  For individual components, 

93% of the ties were detected without false positives in the lateral view.  For over-the-rail 

view, all ties were detected, however 8% of the detected ties were false positives.  

Finally, 100% of the anchors were detected (100% recall), however only 80% of objects 

that were detected as "anchors" were in fact anchors (80% precision). 

 

4.6 Approach for Turnout Inspection 

Components in turnouts differ in both size and shape from those found in normal 

track.  For that reason is important to know what section of the track the system is 

measuring – either within special track work or on tangent or curved track outside of 

turnouts.  To accomplish this, the system looks for periodic components (T), such as frog 

bolts or joint bar bolts (Figures 16A). 

 

A: Original Image Switch Point Bolts 

 

 

B: Panoramic Mosaic from The Mid-rail Area 
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C: Gabor Frequency of the Panoramic Mosaic 

 

 

D: One-dimensional Signal from Gabor Frequency of Panoramic Mosaic 

 

E: Spectral Analysis on One-dimensional Signal 

Figure 15. Turnout Component Recognition 

 

The estimation of periodic component location on turnouts is carried out by 

converting the video of the mid-rail area into a panoramic mosaic (Figures 16B).  The 

periodicity of the components in the panoramic mosaic must be estimated, and the 

components subsequently localized.  Detecting periodicity in the spatial domain is 

unreliable due to the variability of component appearances and the sporadic noise from 

non-periodic components.  It is more reliable to investigate periodicity in a domain of 

texture responses, since each component typically has a characteristic shape that is 

captured as a texture response in the Gabor frequency domain (21). 
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The image is transformed in a block-wise manner into the Gabor frequency 

domain (Figures 16C).  Each block’s height is identical to the height of the mid-rail area 

of Figure 16B, and each block’s response is computed using an overlapping width of one-

half its height with its right neighboring block (Figure16C).  This block-wise Gabor 

response is then processed as a one-dimensional signal (Figure 16D).  Spectral analysis is 

subsequently performed to find periodic components (Figure 16E).  Spectral analysis is a 

technique in which a received signal is analyzed for the frequency components that it 

contains.  We used the Multiple Signal Classification (MUSIC) algorithm because of its 

ability to extract frequencies from a signal containing multiple superposed signals of 

different frequencies (22). 

The MUSIC algorithm outputs a frequency analysis, where the input signal’s 

frequency response is computed for each frequency (Figure 16E).  Dominant frequencies 

are then detected.  The output of Figure 16E shows the power at each radial frequency, ω.  

Each radial frequency relates to the period, T, by the formula .  Hence, when 

the peak is located at , the component repeats every T=14.3 blocks (23).  This 

is a satisfactory approximation since the distance between bolts is not always constant 

(Figure 16A), and can vary depending on the turnout angle, component and turnout 

design, and turnout manufacturer.  Nevertheless, this approximation allows us to reliably 

identify the switch area in a section of track (Figure 16B). 

Spectral estimation provides frequency detection, but not phase estimation.  

Because of that, we are able to detect the presence of a turnout, but we are not able to 

localize the repeating component using only spectral estimation.  In the future, if 

localization is needed, then autocorrelation can be performed on the blocks in the Gabor 

frequency domain.  Candidate blocks would be proposed that have a strong Gabor 

frequency response (Figure 16C).  The autocorrelation between a candidate block and all 

blocks that are nT blocks apart would be measured, where n is some positive integer.  

Blocks that yield a strong Gabor response and that are highly correlated to blocks nT 

away would be considered repeating components 
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Algorithms such as the one presented here, which identifies parts of the track, will 

become valuable as various inspection algorithms are honed for specific parts of the 

track, such as turnouts. 



 

 

32 

CHAPTER 5.  CONCLUSIONS 

This chapter summarizes the research, highlights its contributions, and proposes 

directions for future research. 

5.1 Summary 

The inspection of most railroad track components is currently conducted using 

manual, visual inspections.  These inspections are labor intensive and lack the ability to 

easily record and compare data needed for trend analysis.  Moreover, they are subject to 

variability and subjectivity in different inspectors’ abilities and interpretation of what 

they observe.  Also, it is impractical to manually catalog the condition of such a large 

number of track components, thus it is difficult to develop a quantitative understanding of 

exactly how the non-critical or symptomatic defects may contribute to the occurrence of 

critical defects or other track problems.  

The goal of this machine-vision system for track inspection is to supplement 

current visual inspection methods, allowing consistent, objective inspection of a large 

number of track components.  Based on analysis of railroad derailment statistics and 

input from subject-matter experts, we focused our initial research and development 

efforts on inspection of cut spikes, rail anchors, and turnout components. 

A Virtual Track Model was designed to generate synthetic images for the initial 

development of the machine-vision inspection algorithms.  This simulation also provided 

a test-bed for selecting specific camera views, which would capture the components of 

interest, using virtual cameras placed in the simulation at locations consistent with track 

regulations and vehicle mounting conditions.  We were also able to easily simulate poor 

track conditions by raising spikes and shifting anchors for the system to identify. 
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A Video Track Cart provides a means for collecting continuous video data of low-

density track from various local railroads.  It also enables experimentation with camera 

views, adjustment of camera parameters, and lighting under various environmental 

conditions in a manner analogous to what will be required when attaching the system to 

track inspection vehicles.  Future methods for synchronizing the camera views to identify 

the same component within the two videos will be investigated and incorporated on the 

vehicle. 

An image acquisition system was designed to capture video recordings of track 

components from a moving vehicle.  This system uses a CCD video camera and 

ruggedized computer to obtain and store video on the track.  The system will be 

augmented by adding lighting for adverse daylight conditions (e.g. shadows and low 

contrast areas) that inhibit the machine vision algorithm performance. 

Our algorithms use edge detection and texture information to provide a robust 

means of detecting rail, ties and tie plates, which narrows the search area.  Within this 

restricted area, knowledge of probable component locations allows the algorithms to 

determine the presence of spikes and rail anchors even when there are variations in the 

appearance of the components. 

5.2 Future research directions 

Future work involves refinement of the algorithms to improve the reliability of 

spike and anchor detection.  Anomalous objects from unforeseen circumstances, such as 

leaves, could interfere with this initial texture classification phase.  For this reason, we 

will experiment with several machine-learning methods to perform component detection 

in the presence of anomalies. 

The machine-vision algorithms require previously stored models of the textures 

and components.  We will experiment with dynamically updating the existing models.  

Dynamic updates are needed for the situations where the part of the track that is being 

investigated changes (e.g. closure area followed by a switch area) and also other 
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situations where the components are changing appearance based on environmental or 

manufacturing differences.  Central to this update method is the ability to detect and 

localize the periodically repeating parts.  This will be accomplished in a manner similar 

to what is demonstrated in the "Turnout Component Recognition" section.  We will 

detect periodicity, and then implement the additional component localization step that 

was proposed where autocorrelation is applied to the Gabor frequency domain.  The 

models will be updated using the results of this, which are inherently robust, since the 

detected periodicity relies on some consistent component being repeated. 

Work is continuing on processing the over-the rail view and merging results from 

this view with the lateral view to increase the accuracy of the identified defects and the 

estimated measurements.  Once the algorithms and lighting for inspection of spikes and 

anchors have been refined using the video track cart, the next step is to adapt the system 

for testing on a high-rail vehicle. 
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